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Abstract
We present a simple method for ‘reverse engineering’ causal networks, based
on mutual information, as a correlation measure. The goal of our method is not
to recover all the causal interactions in a network but rather to recover some
causal interactions with a very high confidence. For this purpose, we derive an
‘exact’ theoretical result for the statistical significance of mutual information.
Also, we give some numerical simulation results, obtained for random Boolean
networks, as an idealized model of genetic regulatory networks.

PACS numbers: 89.75.−k, 02.50.Tt, 87.16.Yc

(Some figures in this article are in colour only in the electronic version)

The development of microarray technology gives the possibility of studying the gene
expression of a large number of genes from a variety of organisms [1–3]. The analysis
of microarray data by clustering methods, where patterns of gene expressions are grouped
into clusters, has become one of the most important approaches [4]. A step beyond clustering
is to reconstruct gene regulation networks, i.e. the topology, the causal interactions and the
functional correlation of the genes. There are a number of approaches to ‘reverse engineering’
genetic regulatory networks from gene expression data [5–19]. All available approaches suffer
to various degrees from problems such as an overfitting and underconstrained regression
analysis, high computational complexity or reliance on non-realistic models. None of the
existing computational methods for ‘reverse engineering’ (including ours) is likely to allow
the inference of the full genetic network and its logic.

Here we introduce a simple method for ‘reverse engineering’, based on mutual information
[20], as a causal correlation measure. The goal of our method is not to recover all the
interactions in a network but rather to recover some interactions with high confidence. For this
purpose, we derive an exact result for the statistical significance of mutual information. Most
of the available methods are constructed to infer non-directed connections among genes, from
temporally static data such as gene expression patterns across tissues, cell types, or cancer
samples. The connection inference is acausal, and these methods cannot discriminate whether
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a pair of connected genes, A and B, has A as a regulatory input to B, or B to A. Our approach
tries to overcome this difficulty by using dynamical data, and it requires the knowledge of gene
expression levels at successive time points, before and after a network transition. Also, our
method is general enough such that it can be applied to almost any kind of networks (chemical,
biological, ecological, social, economic etc).

We consider that a network is a directed graph together with a function that assigns a
label to each edge. We denote a network by � = (V ,E, F ), where E stands for the directed
set of edges connecting the set of vertices V , while F corresponds to the labelling function.
Therefore, we assume that the network � has N labelled nodes V = {i|i = 1, . . . , N}. Also,
by [cij ] we denote the adjacency matrix of the network �:

cij =
{

1 if i is connected to j

0 otherwise
. (1)

In general, the number of 1’s in the ith row corresponds to the number of edges entering the
vertex i, and the number of 1’s in the j th column corresponds to the number of edges leaving
the vertex j .

We assume that the variables xi , describing the state of the elements (vertices) of the
network, take values in the alphabet (symbolic set):

A = {α|α = 0, 1, . . . , �}. (2)

Also, the state of each node depends on the information received from its input nodes:

xi = fi

(
xi1 , . . . , xiki

) ∈ A. (3)

Here, xi1 , . . . , xiki
are the states of the input nodes of the node i; ki is the connectivity of

the node i (the number of edges entering the vertex i); fi is the unknown transfer function
corresponding to the node i.

The inference problem consists in finding the adjacency matrix [cij ] and the transfer
functions fi of a network � = (V ,E, F ), given a labelling function F and a set of experimental
data.

The state of the network is denoted by

X = {xi ∈ A|i = 1, . . . , N}. (4)

By evolving the network one step forward, the state changes to

Y = {yi ∈ A|i = 1, . . . , N}. (5)

We say that the pair

(X, Y ) ≡ {(xi, yi) ∈ A × A|i = 1, . . . , N} (6)

describes a causal transition of the network (Y is the output for the input X). We assume that
the following set of causal state transitions:{(

xm
i , ym

i

) ∈ A × A|i = 1, . . . , N;m = 1, . . . ,M
}

(7)

is obtained via some experiments. For example, in the case of gene network, a causal pair may
correspond to two successive measurements of the genome of the same biological organism etc.

We define the causal mutual information between the nodes i and j as following:

Iij =
�∑

α=0

�∑
β=0

pαβ

(
xm

i , ym
j

)
log2

(
pαβ

(
xm

i , ym
j

)
pα

(
xm

i

)
pβ

(
ym

j

)
)

. (8)

Here, pα

(
xm

i

)
and pβ

(
ym

j

)
are the probabilities of the symbols α ∈ A and β ∈ A,

in
{
xm

i

∣∣m = 1, . . . , M
}

and respectively
{
ym

j

∣∣m = 1, . . . ,M
}
, and pαβ

(
xm

i , ym
j

)
is the
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probability of the pair (α, β) in
{(

xm
i , ym

j

)∣∣m = 1, . . . , M
}
. The above probabilities can

be easily estimated as following:

pαβ

(
xm

i , ym
j

) =
∑M

m=1 δ
(
xm

i ;α
)
δ
(
ym

j ;β
)

∑�
α=0

∑�
β=0

∑M
m=1 δ

(
xm

i ;α
)
δ
(
ym

j ;β
) , (9)

pα

(
xm

i

) =
�∑

β=0

pαβ

(
xm

i , ym
j

)
, (10)

pβ

(
ym

j

) =
�∑

α=0

pαβ

(
xm

i , ym
j

)
, (11)

where

δ(x; y) =
{

1 if x = y

0 if x �= y
. (12)

The causal mutual information Iij measures the causal correlation between the node i
(input) and the node j (output). Therefore, Iij measures the strength of a possible oriented
link (edge): i → j .

The algorithm has the following steps:

1. Calculate the causal mutual information Iij for all pairs i, j = 1, . . . , N .
2. Calculate the statistical threshold for mutual information: I ∗.
3. Calculate the approximation of the adjacency matrix:

c′
ij =

{
1 if Iij � I ∗

0 if Iij < I ∗,
i, j = 1, . . . , N. (13)

4. Create the tables for partial transfer functions. After establishing the adjacency matrix
[c′

ij ] (which contains the inputs for each node), for each node one can partially infer the
transfer functions by building the tables with the values of the input nodes and the values
of the output node. These values can be taken directly from the set of causal transitions.

Now, let us derive an analytical result for the value of statistical threshold I ∗. Let us
consider two strings of length M, defined over the alphabet A:

x ≡ {x1, . . . , xM} ∈ AM, (14)

y ≡ {y1, . . . , yM} ∈ AM, (15)

we would like to calculate the relationship between the mutual information I (x, y) and the
probability P(x, y) that the strings are arranged such that

ξα =
M∑

m=1

δ(xm;α), α ∈ A, (16)

ηβ =
M∑

m=1

δ(ym;β), β ∈ A, (17)

γαβ =
M∑

m=1

δ(xm;α)δ(ym;β), α, β ∈ A. (18)
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Let us consider the ‘new’ string:

z = (x, y) ≡ {(x1, y1), . . . , (xM, yM)} ∈ (A × A)M. (19)

The number of strings x ∈ AM, y ∈ AM and z ∈ (A × A)M , satisfying the above conditions
are given by the multinomial coefficients:

(ξα|α ∈ A)! =
(∑�

α=0 ξα

)
!∏�

α=0 ξα!
= M!∏�

α=0 ξα!
, (20)

(ηβ |β ∈ A)! =
(∑�

β=0 ηβ

)
!∏�

β=0 ηβ!
= M!∏�

β=0 ηβ!
, (21)

(γαβ |α, β ∈ A)! =
(∑�

α=0

∑�
β=0 γαβ

)
!∏�

α=0

∏�
β=0 γαβ!

= M!∏�
α=0

∏�
β=0 γαβ!

. (22)

Therefore, the probability P(x, y) is given by

P(x, y) = (γαβ |α, β ∈ A)!

(ξα|α ∈ A)!(ηβ |β ∈ A)!
=

∏�
α=0 ξα!

∏�
β=0 ηβ!

M!
∏�

α=0

∏�
β=0 γαβ!

. (23)

Now, taking the natural logarithm of P(x, y) we obtain

ln P(x, y) =
�∑

α=0

ln ξα! +
�∑

β=0

ln ηβ! −
�∑

α=0

�∑
β=0

ln γαβ! − ln M!. (24)

The logarithm of factorials can be calculated using Stirling’s approximation:

ln n! = ln
n∏

k=1

k =
n∑

k=1

ln k ≈
∫ n

1
ln x dx ≈ n ln n − n (25)

Consequently, we have

ln P(x, y) =
�∑

α=0

ξα ln ξα −
�∑

α=0

ξα +
�∑

β=0

ηβ ln ηβ −
�∑

β=0

ηβ

−
�∑

α=0

�∑
β=0

γαβ ln γαβ +
�∑

α=0

�∑
β=0

γαβ − M ln M + M

=
�∑

α=0

ξα ln ξα +
�∑

β=0

ηβ ln ηβ −
�∑

α=0

�∑
β=0

γαβ ln γαβ − M ln M. (26)

Now, by introducing the probabilities pξα
= ξα/M,pηβ

= ηβ/M,pγαβ
= γαβ/M , we obtain

1

M
ln P(x, y) =

�∑
α=0

pξα
ln

(
Mpξα

)
+

�∑
β=0

pηβ
ln

(
Mpηβ

) −
�∑

α=0

�∑
β=0

pγαβ
ln

(
Mpγαβ

) − ln M

=
�∑

α=0

pξα
ln

(
pξα

)
+ ln(M)

�∑
α=0

pξα
+

�∑
β=0

pηβ
ln

(
pηβ

)
+ ln(M)

�∑
β=0

pηβ

−
�∑

α=0

�∑
β=0

pγαβ
ln

(
pγαβ

) − ln(M)

�∑
α=0

�∑
β=0

pγαβ
− ln M
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=
�∑

α=0

pξα
ln

(
pξα

)
+

�∑
β=0

pηβ
ln

(
pηβ

) −
�∑

α=0

�∑
β=0

pγαβ
ln

(
pγαβ

)
. (27)

Switching to base 2 logarithm we have

1

M
log2 P(x, y) = −H(x) − H(y) + H(x, y), (28)

where H(x),H(y) and H(x, y) are the entropies of x, y and z = (x, y) . Taking into account
that

I (x, y) = H(x) + H(y) − H(x, y), (29)

from the above equation we obtain

I (x, y) = 1

M
log2

1

P(x, y)
. (30)

The two strings x and y are correlated if I (x, y) � I ∗, where the threshold is given by

I ∗ = 1

M
log2

1

P ∗ . (31)

Here, P ∗ is some small value, which for a network with N nodes can be set as P ∗ = N−2.
This is also the probability that only 1 among the N2 possible connections is a false positive.
Therefore, this value gives a very high precision ∼(1−P ∗) in deciding if there is a correlation
between two elements of the network.

In order to evaluate the limitations of the proposed inference method we use the random
Boolean networks (RBNs), as an idealized model of genetic regulatory networks [21]. Also,
the RBN model can be considered as a prototype of a generic dynamical system, as they present
chaotic as well as regular behaviour and many other typical structures of dynamical systems.
From this point of view, the RBNs model is of potential interest in several different fields,
ranging from gene regulation and control, to modelling biochemical, neurophysiological,
social and physical spin systems. The model consists of N binary variables, corresponding to
the two states of gene expression (off and on). In this binary setting, each gene is assigned a
logical function on its inputs showing its next activity. While clearly an idealization, much
has been learned from this class of large Boolean networks, and major features generalize to
a class of piecewise linear differential equations [22, 23], a family of polynomial maps [24]
and a set of nonlinear differential equations [25].

In the case of RBNs, the alphabet has only two symbols A = {α|α = 0, 1}. Each variable
xi ∈ A, i = 1, . . . , N has associated other k variables that act as arguments for a Boolean
function fi , that is used to update the state at each time step. Therefore, the variable xi will
change its state at each time step according to the rule:

xi(t + 1) = fi(xi1(t), . . . , xik (t)). (32)

Both the function fi and its inputs are initially randomly assigned to each variable, but
maintained afterwards through the evolution of the system. The Boolean functions fi are
created as following:

fi(xi1(t), . . . , xiK (t)) =
{

1 with probability p

0 with probability 1 − p
. (33)

The parameter p is called the bias of the network. The inputs are randomly assigned such that
for a given k and N, the total number of connections in the network is kN . Thus, k represents
the mean connectivity of the network.



L652 Letter to the Editor

It is well known that, for a given value of the bias p, RBNs show a transition between
ordered and chaotic phases, separated by a critical value kc of the connectivity [25]. In the
ordered phase (k < kc) the networks freeze in a pattern after a short transient, while in the
chaotic phase (k > kc) all initial patterns are lost and the systems appear to be in a completely
chaotic state. At the critical point (k = kc) a small number of attractors is observed, which
show high stability against minimal perturbations in single elements or Boolean functions and
low reachability among different attractors. As we change the value of p the critical value at
which the transition takes place also changes as kc = [2p(1 − p)]−1.

In our simulations we have used a fixed bias p = 0.5 and we have varied k in the range
k ∈ [0, 8]. Therefore, the critical point is at kc = 2. For every k we have averaged the results
over 100 networks. The causal state transition pairs have been generated by starting the network
in a random state and evolving it one step forward in time. The number of state transition
pairs M is also a varying parameter taking the following values M = 250, 500, 750, 103 and
104. The number of elements in the network is fixed at N = 104.

The precision 	 and the recall 
 of the method are estimated as following:

	 = T P

T P + FP
∈ [0, 1], (34)


 = T P

T P + FN
∈ [0, 1], (35)

where

T P =
N∑

i=1

N∑
j=1

δ(cij ; 1)δ(c′
ij ; 1) (36)

is the number of true positives,

FP =
N∑

i=1

N∑
j=1

δ(cij ; 0)δ(c′
ij ; 1) (37)

is the number of false positives, and

FN =
N∑

i=1

N∑
j=1

δ(cij ; 1)δ(c′
ij ; 0) (38)

is the number of false negatives in the approximation c′
ij of the real adjacency matrix cij .

In figure 1 we give the precision 	(k) and the recall 
(k) obtained for different values
of M. One can see that the precision stays at 	(k) = 1 for any values of k and M. This means
that the method does not generate false positive connections. The recall reaches its maximum
for k ∈ (1, 2) after which it drops monotonously. By increasing the number of state transition
pairs (M) the performance of the method increases, reaching a saturation value. For example,
by increasing M from 103 to 104 one gains only about 2–3% in recall.

For a large interval k ∈ (0, 7), the method is able to recall between 20% and 65% of the
network, which is not too bad considering the simplicity of the approach. Assuming that the
average connectivity of a real genetic network with N ∼ 104 genes is somewhere in this range
we conclude that by using this simple method one could recover a good per cent of it just by
using about M ∼ 102–103 state transitions. Of course, this depends also on the quality of the
experimental data (i.e., the effect of noise).

Let us now analyse the effect of noise on the precision and recall of the proposed method.
It is obvious that the precision of the method should not suffer, because the threshold (31) is
independent of the level of noise. So, by introducing noise we are only expecting to see a
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Figure 1. The precision and the recall of the algorithm applied to RBNs.

decrease in recall. In order to measure quantitatively the effect of noise we consider that the
Boolean functions (32) are ‘misbehaving’ with a probability ε. This means that the update in
the network is made according to the following rule:

xi(t + 1) =
{

fi(xi1(t), . . . , xik (t)) if rnd() � ε

[fi(xi1(t), . . . , xik (t)) + 1] modulo(2) if rnd() < ε,
(39)

where rnd() ∈ [0, 1] returns an uniform random number. In figure 2 we give the precision
	(k) and the recall 
(k) obtained for different values of ε ∈ {0.0, 0.1, 0.2, 0.3}, N = 103

and M = 500. One can see that the precision stays at 	(k) = 1 for any values of ε and k.
However, the recall drops proportionally with the noise level ε.

In conclusion, we have presented a simple method for ‘reverse engineering’ causal
networks. There are a number of characteristics that make our method significantly different
from other approaches. For example, Liang et al [5] and Akutsu et al [6] have calculated a
lower bound and an upper bound of the number of expression patterns required to identify the
genetic network using the Boolean network model. However, their results require perfect data
and therefore, is not robust with respect to noise. The Bayesian network approach [10, 13]
uses heuristic procedures to search for locally optimal graph structures. Learning the most
likely network requires the exploration of the entire graph space, which is an NP-complete
problem. The relevance networks method, proposed by Butte et al [8, 9], and the ARACNE
algorithm developed by the Califano group [18, 19], compute mutual information for all gene
pairs and infer that two genes are biologically related if their mutual information is above
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Figure 2. The precision 	(k) and the recall 
(k) as a function of the noise level ε ∈ {0.0, 0.1,

0.2, 0.3}.

a certain threshold. This method tries to overcome the hard computational problem raised
by the Bayesian Network approach. However, the threshold is calculated only by using
some semi-empirical methods. There is no proof that by setting the threshold according to
these procedures, the connections will be inferred with a high precision. A high precision
of 	(k) ∼ 1 is a must for any inference method. For example, let us assume that ∼108

connections are inferred with a precision of only 	(k) ∼ 0.95. This is translated in a huge
number of false positives FP ∼ 106 which is quite difficult and expensive to be tested in the
lab.

Our method builds upon the algorithms described in [8, 9, 18, 19] and adds several major
improvements. These algorithms were constructed to infer only non-directed connections
among genes, from temporally static data such as gene expression patterns across tissues, cell
types, or cancer samples. Our approach tries to overcome this difficulty by using dynamical
data, and it requires the knowledge of gene expression levels at successive time points, before
and after a network transition. Also, the goal of our method is not to recover all the causal
interactions in a network but rather to recover some causal interactions with high confidence.
For this purpose, we have derived an analytical result for the threshold of mutual information
(31). This result gives a generalization of the methods used in previous approaches. The
derived threshold gives a high precision of ∼(1−P ∗) , where P ∗ is an arbitrary small number.
Within its scope, our approach overcomes several limitations of previous methods. It has
a low computational complexity and it does not rely on unrealistic network models or a
priori assumptions. Also, the method can be applied to arbitrarily complex networks, without
reliance on heuristic search procedures.
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